Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 7.817
1.
Opt Lett ; 49(9): 2425-2428, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691735

Cherenkov imaging is an ideal tool for real-time in vivo verification of a radiation therapy dose. Given that radiation is pulsed from a medical linear accelerator (LINAC) together with weak Cherenkov emissions, time-gated high-sensitivity imaging is required for robust measurements. Instead of using an expensive camera system with limited efficiency of detection in each pixel, a single-pixel imaging (SPI) approach that maintains promising sensitivity over the entire spectral band could be used to provide a low-cost and viable alternative. A prototype SPI system was developed and demonstrated here in Cherenkov imaging of LINAC dose delivery to a water tank. Validation experiments were performed using four regular fields and an intensity-modulated radiotherapy (IMRT) delivery plan. The Cherenkov image-based projection percent depth dose curves (pPDDs) were compared to pPDDs simulated by the treatment planning system (TPS), with an overall average error of 0.48, 0.42, 0.65, and 1.08% for the 3, 5, 7, and 9 cm square beams, respectively. The composite image of the IMRT plan achieved a 85.9% pass rate using 3%/3 mm gamma index criteria, in comparing Cherenkov intensity and TPS dose. This study validates the feasibility of applying SPI to the Cherenkov imaging of radiotherapy dose for the first time to our knowledge.


Particle Accelerators , Time Factors , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
2.
Sci Rep ; 14(1): 10719, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729975

The shielding parameters can vary depending on the geometrical structure of the linear accelerators (LINAC), treatment techniques, and beam energies. Recently, the introduction of O-ring type linear accelerators is increasing. The objective of this study is to evaluate the shielding parameters of new type of linac using a dedicated program developed by us named ORSE (O-ring type Radiation therapy equipment Shielding Evaluation). The shielding evaluation was conducted for a total of four treatment rooms including Elekta Unity, Varian Halcyon, and Accuray Tomotherapy. The developed program possesses the capability to calculate transmitted dose, maximum treatable patient capacity, and shielding wall thickness based on patient data. The doses were measured for five days using glass dosimeters to compare with the results of program. The IMRT factors and use factors obtained from patient data showed differences of up to 65.0% and 33.8%, respectively, compared to safety management report. The shielding evaluation conducted in each treatment room showed that the transmitted dose at every location was below 1% of the dose limit. The results of program and measurements showed a maximum difference of 0.003 mSv/week in transmitted dose. The ORSE program allows for the shielding evaluation results to the clinical environment of each institution based on patient data.


Particle Accelerators , Radiation Protection , Particle Accelerators/instrumentation , Radiation Protection/instrumentation , Radiation Protection/methods , Humans , Radiotherapy, Intensity-Modulated/methods , Radiation Dosage
3.
Phys Med ; 121: 103364, 2024 May.
Article En | MEDLINE | ID: mdl-38701626

PURPOSE: Test whether a well-grounded KBP model trained on moderately hypo-fractionated prostate treatments can be used to satisfactorily drive the optimization of SBRT prostate treatments. MATERIALS AND METHODS: A KBP model (SBRT-model) was developed, trained and validated using the first forty-seven clinically treated VMAT SBRT prostate plans (42.7 Gy/7fx or 36.25 Gy/5fx). The performance and robustness of this model were compared against a high-quality KBP-model (ST-model) that was already clinically adopted for hypo-fractionated (70 Gy/28fx and 60 Gy/20fx) prostate treatments. The two models were compared in terms of their predictions robustness, and the quality of their outcomes were evaluated against a set of reference clinical SBRT plans. Plan quality was assessed using DVH metrics, blinded clinical ranking, and a dedicated Plan Quality Metric algorithm. RESULTS: The plan libraries of the two models were found to share a high degree of anatomical similarity. The overall quality (APQM%) of the plans obtained both with the ST- and SBRT-models was compatible with that of the original clinical plans, namely (93.7 ± 4.1)% and (91.6 ± 3.9)% vs (92.8.9 ± 3.6)%. Plans obtained with the ST-model showed significantly higher target coverage (PTV V95%): (97.9 ± 0.8)% vs (97.1 ± 0.9)% (p < 0.05). Conversely, plans optimized following the SBRT-model showed a small but not-clinically relevant increase in OAR sparing. ST-model generally provided more reliable predictions than SBRT-model. Two radiation oncologists judged as equivalent the plans based on the KBP prediction, which was also judged better that reference clinical plans. CONCLUSION: A KBP model trained on moderately fractionated prostate treatment plans provided optimal SBRT prostate plans, with similar or larger plan quality than an embryonic SBRT-model based on a limited number of cases.


Prostatic Neoplasms , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Planning, Computer-Assisted/methods , Radiosurgery/methods , Male , Prostatic Neoplasms/radiotherapy , Knowledge Bases , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
4.
BMC Cancer ; 24(1): 576, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730348

OBJECTIVE: Nasopharyngeal adenoid cystic carcinoma (NACC) is a rare malignancy with special biological features. Controversies exist regarding the treatment approach and prognostic factors in the IMRT era. This study aimed to evaluate the long-term outcomes and management approaches in NACC. METHODS: Fifty patients with NACC at our institution between 2010 and 2020 were reviewed. Sixteen patients received primary radiotherapy (RT), and 34 patients underwent primary surgery. RESULTS: Between January 2010 and October 2020, a total of 50 patients with pathologically proven NACC were included in our analysis. The median follow-up time was 58.5 months (range: 6.0-151.0 months). The 5-year overall survival rate (OS) and progression-free survival rate (PFS) were 83.9% and 67.5%, respectively. The 5-year OS rates of patients whose primary treatment was surgery and RT were 90.0% and 67.3%, respectively (log-rank P = 0.028). The 5-year PFS rates of patients whose primary treatment was surgery or RT were 80.8% and 40.7%, respectively (log-rank P = 0.024). Multivariate analyses showed that nerve invasion and the pattern of primary treatment were independent factors associated with PFS. CONCLUSIONS: Due to the relative insensitivity to radiation, primary surgery seemed to provide a better chance of disease control and improved survival in NACC. Meanwhile, postoperative radiotherapy should be performed for advanced stage or residual tumours. Cranial nerve invasion and treatment pattern might be important factors affecting the prognosis of patients with NACC.


Carcinoma, Adenoid Cystic , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Adenoid Cystic/radiotherapy , Carcinoma, Adenoid Cystic/mortality , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/surgery , Male , Female , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Adult , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Aged , Retrospective Studies , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/pathology , Young Adult , Prognosis , Survival Rate , Treatment Outcome , Follow-Up Studies , Adolescent , Progression-Free Survival
5.
J Coll Physicians Surg Pak ; 34(5): 573-577, 2024 May.
Article En | MEDLINE | ID: mdl-38720219

OBJECTIVE:  To compare the acute toxicities of two radiation treatment techniques, intensity modulated radiation therapy (IMRT), and 3-dimensional conformal radiation therapy (3D-CRT) in localised prostate adenocarcinoma. STUDY DESIGN: Descriptive study. Place and Duration of the Study: Department of Oncology, Dr. Ziauddin Hospital, Karachi, Pakistan, from July 2016 to June 2022. METHODOLOGY: Patients with localised prostate adenocarcinoma who underwent treatment using two different advanced radiotherapy techniques i.e., IMRT and 3D-CRT were recruited during the study period. They were followed up for six months for acute gastrointestinal (GI) and genitourinary (GU) adverse events (acute toxicities) related to both treatment modalities according to Modified radiation therapy oncology group (RTOG) criteria. The acute toxicities were assessed at the 2nd, 4th, and 6th week during treatment and at the 3rd and 6th month after treatment. RESULTS:  There were 78 patients, with 39 patients in each group. The mean age was 68 ± 10 years in the 3D-CRT and 68 ± 07 years in the IMRT group. Patients in the IMRT group exhibited markedly lower treatment-related acute GI and GU effects at the end of 4th and 6th weeks for anorectal pain (p = 0.04) and (p = 0.01) and burning micturition (p = 0.003) and (p = 0.01), respectively. Furthermore, at 3 months anorectal pain (p = 0.02), loose stools (p = 0.005), and burning micturition (p = 0.01) were present and at 6 months anorectal pain was (p = 0.01) still present. CONCLUSION: Radiation therapy modalities 3D-CRT and IMRT both showed acceptable toxicity profile in the management of localised prostate cancer, while IMRT group exhibited significantly lower treatment-related acute GI and GU effects. KEY WORDS: 3D-CRT (3-Dimensional Conformal Radiation Therapy), IMRT (Intensity-Modulated Radiation Therapy), Radiation toxicity.


Prostatic Neoplasms , Radiotherapy, Conformal , Radiotherapy, Intensity-Modulated , Humans , Male , Prostatic Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Aged , Radiotherapy, Conformal/adverse effects , Radiotherapy, Conformal/methods , Middle Aged , Radiation Injuries/etiology , Adenocarcinoma/radiotherapy , Adenocarcinoma/pathology , Pakistan , Radiotherapy Dosage
6.
Recenti Prog Med ; 115(5): 1e-6e, 2024 May.
Article It | MEDLINE | ID: mdl-38708539

INTRODUCTION AND AIM: Locally advanced head and neck squamous cell carcinoma (LA-Hnscc) is a true therapeutical challenge in the modern era and the scientific community is trying to face this challenge with new therapeutical strategies, including combinations of monoclonal antibodies and radiation therapy. The aim of this study is to evaluate clinical outcomes in LA-Hnscc patients unfit to receive platinum-based chemotherapy, treated with concurrent simultaneous integrated boost-intensity modulated radiotherapy (Sib-Imrt) + cetuximab (Ctx) in daily clinical practice. METHODS: LA-Hnscc patients not included in other prospective studies treated in 4 Italian radiotherapy units (2 Messina, 1 Rome, and 1 Lecce) using Sib-Imrt and Ctx were included in this study. Acute and late toxicities and overall survival (OS) have been evaluated. RESULTS: Data regarding 27 patients with squamous tumour were collected and reviewed. The primary tumour sites were oropharynx in 14 patients (51.9%), oral cavity in 7 (25.9%), larynx in 3 (11%) and other sites in 3(11%). There were 20 (74%) patients had stage IV (16 IVa and 4 IVb). Complete remission was observed in 18 patients (66.7%), a partial remission in 4 (14.8%) whilst 4 had a progression disease (14.8%). After 3 year of follow-up 7/27 patients were deaths. The OS was 95.5%, 62.5% and 52.9% respectively at 1,2 and 3 years. Acute toxicities were observed in all treated patients (mucositis, dermatitis and dysphagia) while 66.7% of patients developed late toxicities. All observed toxicities were grade 1 to 3 and just 1 patient developed a G4 toxicity. CONCLUSION: The concurrent bio-radiotherapy of Sib-Imrt and cetuximab is feasible in real-life daily clinical practice for LA-Hnscc patients unfit for platinum-based chemoradiotherapy.


Antineoplastic Agents, Immunological , Cetuximab , Chemoradiotherapy , Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Squamous Cell Carcinoma of Head and Neck , Humans , Cetuximab/administration & dosage , Male , Female , Middle Aged , Aged , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/pathology , Chemoradiotherapy/methods , Antineoplastic Agents, Immunological/administration & dosage , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Italy , Survival Rate , Adult , Treatment Outcome , Neoplasm Staging , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/drug therapy , Retrospective Studies
7.
Technol Cancer Res Treat ; 23: 15330338241241898, 2024.
Article En | MEDLINE | ID: mdl-38557213

Introduction: In this study, we sought to develop a thermoplastic patient-specific helmet bolus that could deliver a uniform therapeutic dose to the target and minimize the dose to the normal brain during whole-scalp treatment with a humanoid head phantom. Methods: The bolus material was a commercial thermoplastic used for patient immobilization, and the holes in the netting were filled with melted paraffin. We compared volumetric-modulated arc therapy treatment plans with and without the bolus for quantitative dose distribution analysis. We analyzed the dose distribution in the region of interest to compare dose differences between target and normal organs. For quantitative analysis of treatment dose, OSLD chips were attached at the vertex (VX), posterior occipital (PO), right (RT), and left temporal (LT) locations. Results: The average dose in the clinical target volume was 6553.8 cGy (99.3%) with bolus and 5874 cGy (89%) without bolus, differing by more than 10% from the prescribed dose (6600 cGy) to the scalp target. For the normal brain, it was 3747.8 cGy (56.8%) with bolus and 5484.6 cGy (83.1%) without bolus. These results show that while the dose to the treatment target decreased, the average dose to the normal brain, which is mostly inside the treatment target, increased by more than 25%. With the bolus, the OSLD measured dose was 102.5 ± 1.2% for VX and 101.5 ± 1.9%, 95.9 ± 1.9%, and 81.8 ± 2.1% for PO, RT, and LT, respectively. In addition, the average dose in the treatment plan was 102%, 101%, 93.6%, and 80.7% for VX, PO, RT, and LT. When no bolus was administered, 59.6 ± 2.4%, 112.6 ± 1.8%, 47.1 ± 1.6%, and 53.1 ± 2.3% were assessed as OSLD doses for VX, PO, RT, and LT, respectively. Conclusion: This study proposed a method to fabricate patient-specific boluses that are highly reproducible, accessible, and easy to fabricate for radiotherapy to the entire scalp and can effectively spare normal tissue while delivering sufficient surface dose.


Organothiophosphorus Compounds , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy, Intensity-Modulated/methods , Scalp , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Feasibility Studies , Head Protective Devices , Organs at Risk/radiation effects
8.
Radiat Oncol ; 19(1): 48, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622628

BACKGROUND: Tumor regression and organ movements indicate that a large margin is used to ensure target volume coverage during radiotherapy. This study aimed to quantify inter-fractional movements of the uterus and cervix in patients with cervical cancer undergoing radiotherapy and to evaluate the clinical target volume (CTV) coverage. METHODS: This study analyzed 303 iterative cone beam computed tomography (iCBCT) scans from 15 cervical cancer patients undergoing external beam radiotherapy. CTVs of the uterus (CTV-U) and cervix (CTV-C) contours were delineated based on each iCBCT image. CTV-U encompassed the uterus, while CTV-C included the cervix, vagina, and adjacent parametrial regions. Compared with the planning CTV, the movement of CTV-U and CTV-C in the anterior-posterior, superior-inferior, and lateral directions between iCBCT scans was measured. Uniform expansions were applied to the planning CTV to assess target coverage. RESULTS: The motion (mean ± standard deviation) in the CTV-U position was 8.3 ± 4.1 mm in the left, 9.8 ± 4.4 mm in the right, 12.6 ± 4.0 mm in the anterior, 8.8 ± 5.1 mm in the posterior, 5.7 ± 5.4 mm in the superior, and 3.0 ± 3.2 mm in the inferior direction. The mean CTV-C displacement was 7.3 ± 3.2 mm in the left, 8.6 ± 3.8 mm in the right, 9.0 ± 6.1 mm in the anterior, 8.4 ± 3.6 mm in the posterior, 5.0 ± 5.0 mm in the superior, and 3.0 ± 2.5 mm in the inferior direction. Compared with the other tumor (T) stages, CTV-U and CTV-C motion in stage T1 was larger. A uniform CTV planning treatment volume margin of 15 mm failed to encompass the CTV-U and CTV-C in 11.1% and 2.2% of all fractions, respectively. The mean volume change of CTV-U and CTV-C were 150% and 51%, respectively, compared with the planning CTV. CONCLUSIONS: Movements of the uterine corpus are larger than those of the cervix. The likelihood of missing the CTV is significantly increased due to inter-fractional motion when utilizing traditional planning margins. Early T stage may require larger margins. Personal radiotherapy margining is needed to improve treatment accuracy.


Radiotherapy, Image-Guided , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Uterine Cervical Neoplasms/pathology , Radiotherapy Planning, Computer-Assisted/methods , Motion , Pelvis/pathology , Cone-Beam Computed Tomography/methods , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
9.
Sci Rep ; 14(1): 9148, 2024 04 21.
Article En | MEDLINE | ID: mdl-38644367

Cryotherapy is an ablative therapy that can be used to treat localized prostate cancer. In case of recurrence, treatment options are not well-defined, and their outcomes are unknown. We therefore collected all patients treated with radiotherapy after cryotherapy for prostate cancer recurrence in Nantes (France) between 2012 and 2019. We identified ten patients. After a median follow-up of 5 years, two patients presented late grade 3 toxicities; one patient presented a grade 3 rectal hemorrhage, and one had a grade 3 hematuria. Two patients relapsed at 61 and 62 months, and three patients died of other causes. Radiotherapy to treat local prostate cancer recurrence after cryotherapy seems feasible and effective in local control. These results do not allow us to recommend this technique in current practice but are encouraging for the conduct of prospective trials.


Cryotherapy , Neoplasm Recurrence, Local , Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Salvage Therapy , Humans , Male , Prostatic Neoplasms/radiotherapy , Aged , Salvage Therapy/methods , Cryotherapy/methods , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Middle Aged , Neoplasm Recurrence, Local/radiotherapy , Aged, 80 and over , Treatment Failure
10.
Radiat Oncol ; 19(1): 45, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38589961

BACKGROUND: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. METHODS: The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. RESULTS: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. CONCLUSIONS: PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.


Prostatic Neoplasms , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Urinary Bladder , Prostatic Neoplasms/radiotherapy , Organs at Risk
11.
Zhongguo Yi Liao Qi Xie Za Zhi ; 48(2): 150-155, 2024 Mar 30.
Article Zh | MEDLINE | ID: mdl-38605613

Objective: A quality control (QC) system based on the electronic portal imaging device (EPID) system was used to realize the Multi-Leaf Collimator (MLC) position verification and dose verification functions on Primus and VenusX accelerators. Methods: The MLC positions were calculated by the maximum gradient method of gray values to evaluate the deviation. The dose of images acquired by EPID were reconstructed using the algorithm combining dose calibration and dose calculation. The dose data obtained by EPID and two-dimensional matrix (MapCheck/PTW) were compared with the dose calculated by Pinnacle/TiGRT TPS for γ passing rate analysis. Results: The position error of VenusX MLC was less than 1 mm. The position error of Primus MLC was significantly reduced after being recalibrated under the instructions of EPID. For the dose reconstructed by EPID, the average γ passing rates of Primus were 98.86% and 91.39% under the criteria of 3%/3 mm, 10% threshold and 2%/2 mm, 10% threshold, respectively. The average γ passing rates of VenusX were 98.49% and 91.11%, respectively. Conclusion: The EPID-based accelerator quality control system can improve the efficiency of accelerator quality control and reduce the workload of physicists.


Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Algorithms , Calibration , Electronics , Radiotherapy, Intensity-Modulated/methods , Radiometry/methods
12.
Radiat Oncol ; 19(1): 46, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594678

OBJECTIVE: To evaluate effects of bone marrow sparing (BMS) radiotherapy on decreasing the incidence of acute hematologic toxicity (HT) for locoregionally advanced cervical cancer (LACC) patients treated by pelvic irradiation. MATERIALS AND METHODS: LACC patients were recruited prospectively from May 2021 to May 2022 at a single center and were evenly randomized into the BMS group and the control group. All patients received pelvic irradiation with concurrent cisplatin (40 mg/m2 weekly), followed by brachytherapy and BM V40 < 25% in the BMS group was additionally prescribed. Acute HT was assessed weekly. Binary logistic regression model and receiver operating characteristic (ROC) curve were used for predictive value analysis. The trial was registered with Chinese clinical trial registry (ChiCTR2200066485). RESULTS: A total of 242 patients were included in the analysis. Baseline demographic, disease and treatment characteristics were balanced between the two groups. In the intention-to-treat population, BMS was associated with a lower incidence of grade ≥ 2 and grade ≥ 3 acute HT, leukopenia and neutropenia s(72.70% v 90.90%, P < 0.001*; 16.50% vs. 65.30%, P < 0.001*; 66.10% vs. 85.10%, P = 0.001*; 13.20% vs. 54.50%, P < 0.001*; 37.20% vs. 66.10%, P < 0.001*; 10.70% vs. 43.80%, P < 0.001*). BMS also resulted in decreased dose delivered to the organs at risk (OARs) including rectum, bladder and left and right femoral head. Univariate and multivariate analyses showed that BM V40 was an independent risk factor for grade ≥ 3 acute HT (odds ratio [OR] = 2.734, 95% confidence interval [CI] = 1.959-3.815, P < 0.001*). Cutoff value was 25.036% and area under the curve (AUC) was 0.786. The nomogram was constructed, which was rigorously evaluated and internally cross-validated, showing good predictive performance. CONCLUSIONS: Receiving BMS pelvic irradiation could reduce the incidence of acute HT in LACC patients, and BM V40 < 25% may be a significant factor in reducing the risks of acute HT.


Leukopenia , Radiation Injuries , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Bone Marrow/radiation effects , Uterine Cervical Neoplasms/radiotherapy , Prospective Studies , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage , Cisplatin , Leukopenia/etiology , Chemoradiotherapy/adverse effects , Radiation Injuries/etiology
13.
Asian Pac J Cancer Prev ; 25(4): 1451-1456, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38680007

OBJECTIVE: To identify swallowing-related structures (SRSs) predicting post-radiotherapy dysphagia in oropharyngeal carcinoma patients. MATERIAL AND METHODS: Between September 2020 and October 2022, oropharyngeal cancer patients who had completed radiotherapy at least one year before without recurrence or residuals were selected. They underwent flexible endoscopic evaluation of swallowing (FEES) assessments and dysphagia grading. The mean radiation doses delivered to their SRSs were recalculated. The correlation between radiation doses to each SRS and FEES scores was analysed. RESULTS: Twenty-nine participants, aged 51-73 years, were enrolled. Six patients had received two-dimensional radiotherapy, eight had undergone three-dimensional conformal radiotherapy, and fifteen had received intensity-modulated radiation therapy. Radiation doses to the inferior pharyngeal constrictor, cricopharyngeus and glottic larynx significantly predicted dysphagia for both semisolids (p = 0.023, 0.030 and 0.001) and liquid diets (p = 0.021, 0.013 and 0.002). The esophageal inlet significantly predicted swallowing outcomes for only the liquid diet (p = 0.007). CONCLUSIONS: This study supports that SRS-sparing during radiotherapy for oropharyngeal cancers improves swallowing outcomes.


Deglutition Disorders , Oropharyngeal Neoplasms , Humans , Deglutition Disorders/etiology , Deglutition Disorders/radiotherapy , Middle Aged , Male , Oropharyngeal Neoplasms/radiotherapy , Oropharyngeal Neoplasms/complications , Female , Aged , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods , Follow-Up Studies , Prognosis , Deglutition , Radiation Injuries/etiology , Radiotherapy, Conformal/adverse effects , Radiotherapy, Conformal/methods , Radiotherapy Dosage , Organ Sparing Treatments/methods
14.
Asian Pac J Cancer Prev ; 25(4): 1425-1432, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38680004

AIM: This study comprehensively investigated pre-treatment quality assurance (QA) for 100 cancer patients undergoing stereotactic treatments (SRS/SRT) using various detectors. METHODS: The study conducted QA for SRS/SRT treatments planned with a 6MV SRS beam at a dose rate of 1,000 MU/min, utilizing Eclipse v13.6 Treatment Planning System (TPS). Point dose measurements employed 0.01cm3 and 0.13cm3 cylindrical ionization chambers, while planar dose verification utilized Gafchromic EBT-XD Film and Portal Imager (aS1000). Plans were categorized by target volume, and a thorough analysis compared point dose agreements, planar dose gamma pass rates, and their correlations with chamber volume mean dose, detector type, and point dose agreement. Additionally, the consistency between different ionization chambers was assessed. RESULTS: Point dose agreement generally improved with increasing target volume, except for volumes over 10cm3 with 0.01cm3 chambers, showing a contrary trend. Significant differences (p<0.05) were observed between TPS and measured doses for both chambers. Gamma pass rate improved with increasing target volume in EBT XD and aS1000 analyses, except for the >10cm3 group in EBT XD. EBT XD demonstrated better agreement with TPS for target volumes up to 10cm3 compared to aS1000, with a statistically significant difference (p<0.05) between the detectors. Strong correlations were found between chamber point dose and chamber volume mean dose agreement, as well as between the two gamma criteria analyses of the same detector type in the planar dose correlation analysis. However, weak correlations were discovered for other analyses. CONCLUSION: This study found weak correlation between different detector types in pre-treatment QA for point dose and planar dose evaluation. However, within a specific detector type, strong correlation was observed for different point dose evaluation methods and gamma criteria. This highlights the importance of cautious interpretation of QA results, particularly for SRS QA, due to the lack of correlation between detector types.


Neoplasms , Quality Assurance, Health Care , Radiosurgery , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Planning, Computer-Assisted/standards , Quality Assurance, Health Care/standards , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods
15.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Article En | MEDLINE | ID: mdl-38584413

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Deep Learning , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Female , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/radiotherapy , Retrospective Studies , Organs at Risk
16.
Cancer Med ; 13(8): e7192, 2024 Apr.
Article En | MEDLINE | ID: mdl-38650546

BACKGROUND: Patients with head and neck cancer (HNC) may experience substantial anatomical changes during the course of radiotherapy treatment. The implementation of adaptive radiotherapy (ART) proves effective in managing the consequent impact on the planned dose distribution. METHODS: This narrative literature review comprehensively discusses the diverse strategies of ART in HNC and the documented dosimetric and clinical advantages associated with these approaches, while also addressing the current challenges for integration of ART into clinical practice. RESULTS AND CONCLUSION: Although based on mainly non-randomized and retrospective trials, there is accumulating evidence that ART has the potential to reduce toxicity and improve quality of life and tumor control in HNC patients treated with RT. However, several questions remain regarding accurate patient selection, the ideal frequency and timing of replanning, and the appropriate way for image registration and dose calculation. Well-designed randomized prospective trials, with a predetermined protocol for both image registration and dose summation, are urgently needed to further investigate the dosimetric and clinical benefits of ART.


Head and Neck Neoplasms , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Humans , Head and Neck Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiation Oncologists , Quality of Life , Radiotherapy, Image-Guided/methods , Radiotherapy, Intensity-Modulated/methods
17.
Sci Rep ; 14(1): 9283, 2024 04 23.
Article En | MEDLINE | ID: mdl-38654028

We compared survival outcomes of high-dose concomitant boost radiotherapy (HDCBRT) and conventional dose radiotherapy (CRT) for newly diagnosed glioblastoma (GB). Patients treated with intensity-modulated radiation therapy for newly diagnosed GB were included. In HDCBRT, specific targets received 69, 60, and 51 Gy in 30 fractions, while 60 Gy in 30 fractions was administered with a standard radiotherapy method in CRT. Overall survival (OS) and progression-free survival (PFS) were compared using the Log-rank test, followed by multivariate Cox analysis. The inverse probability of treatment weighting (IPTW) method was also applied to each analysis. Among 102 eligible patients, 45 received HDCBRT and 57 received CRT. With a median follow-up of 16 months, the median survival times of OS and PFS were 21 and 9 months, respectively. No significant differences were observed in OS or PFS in the Kaplan-Meier analyses. In the multivariate analysis, HDCBRT correlated with improved OS (hazard ratio, 0.49; 95% confidence interval, 0.27-0.90; P = 0.021), and this result remained consistent after IPTW adjustments (P = 0.028). Conversely, dose suppression due to the proximity of normal tissues and IMRT field correlated with worse OS and PFS (P = 0.008 and 0.049, respectively). A prospective study with a stricter protocol is warranted to validate the efficacy of HDCBRT for GB.


Brain Neoplasms , Glioblastoma , Radiotherapy, Intensity-Modulated , Humans , Glioblastoma/radiotherapy , Glioblastoma/mortality , Male , Female , Middle Aged , Aged , Radiotherapy, Intensity-Modulated/methods , Adult , Brain Neoplasms/radiotherapy , Brain Neoplasms/mortality , Radiotherapy Dosage , Kaplan-Meier Estimate , Progression-Free Survival , Treatment Outcome
18.
In Vivo ; 38(3): 1412-1420, 2024.
Article En | MEDLINE | ID: mdl-38688603

BACKGROUND/AIM: To compare implant sparing irradiation with conventional radiotherapy (RT) using helical (H) and TomoDirect (TD) techniques in breast cancer patients undergoing immediate breast reconstruction (IBR). PATIENTS AND METHODS: The dosimetric parameters of 40 patients with retropectoral implants receiving 50.4 Gy delivered in 28 fractions were analyzed. Three plans were created: H plan using conventional planning target volume (PTV) that included the chest wall, skin, and implant; TD plan using conventional PTV; and Hs plan using implant-sparing PTV. The H, TD, and Hs plans were compared for PTV doses, organ-at-risk (OAR) doses, and treatment times. RESULTS: Dose distribution in the Hs plan was less homogeneous and uniform than that in the H and TD plans. The TD plan had lower lung, heart, contralateral breast, spinal cord, liver, and esophagus doses than the Hs plan. Compared to the Hs plan, the H plan had lower lung volume receiving 5Gy (V5) (39.1±3.9 vs. 41.2±3.9 Gy; p<0.001), higher V20 (12.3±1.3 vs. 11.5±2.6 Gy; p=0.02), and higher V30 (7.5±1.6 vs. 4.4±1.7 Gy; p<0.001). H plan outperformed Hs plan in heart dosimetric parameters except V20. The Hs plan had significantly lower mean implant doses (43.4±2.1 Gy) than the H plan (51.4±0.5 Gy; p<0.001) and the TD plan (51.9±0.6 Gy; p<0.001). Implementing an implant sparing technique for silicone dose reduction decreases lung doses. CONCLUSION: Conventional H and TD plans outperform the implant sparing helical plan dosimetrically. Because capsular contracture during RT is unpredictable, long-term clinical outcomes are required to determine whether silicon should be spared.


Breast Neoplasms , Mammaplasty , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Humans , Female , Breast Neoplasms/radiotherapy , Breast Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Mammaplasty/methods , Adult , Breast Implants , Radiometry , Aged
19.
In Vivo ; 38(3): 1306-1315, 2024.
Article En | MEDLINE | ID: mdl-38688632

BACKGROUND/AIM: The current standard for anal cancer treatment is essentially a 'one size fits all' approach where the dose of radiotherapy is similar whether the tumor is very small or very large. Trials are ongoing to evaluate dose de-escalation or escalation in localized disease depending on tumor size. The aim of the study was to assess results of a personalized approach involving dose stratification by stage and boost dose adjusted according to tumor early response. PATIENTS AND METHODS: We retrospectively reviewed squamous cell anal cancer (SCAC) patients treated between 2011 and 2021 by long-course intensity-modulated radiotherapy (IMRT) and concomitant chemotherapy (CT); a sequential boost could be administered by IMRT or interventional radiotherapy (IRT) to obtain a total equivalent dose in 2 Gy (EQD2) of 54-60 Gy. RESULTS: We analyzed 110 patients (61% T3-4 stage, 71% node-positive). A total of 68.2% of patients received a sequential boost, mainly by IRT; median total EQD2 to primary site was 59.3 Gy. Acute ≥G3 toxicity rate was 36.4%. Median follow-up (FUP) was 35.4 months. A total of 83% of patients achieved clinical complete response (cCR); locoregional recurrence (LRR) occurred in 20.9% and distant metastases in 6.4% of cases. A total of 12.7% patients underwent salvage surgery. A total of 25.5% of patients reported ≥G2 and 4.5% ≥G3 late toxicity. The estimated 3-year overall survival, disease-free survival and colostomy-free survival were 92%, 72% and 84% respectively; 3-year-LRR was 22%. Nodal stage was associated with poorer cCR probability and higher LRR (p<0.05). CONCLUSION: Our results on a large cohort of patients with locally advanced SCAC and long FUP time confirmed the efficacy of IMRT; high local control and manageable toxicity also suggest IRT as a promising method in treatment personalization.


Anus Neoplasms , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated , Humans , Male , Female , Middle Aged , Anus Neoplasms/radiotherapy , Anus Neoplasms/pathology , Anus Neoplasms/mortality , Aged , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Adult , Treatment Outcome , Aged, 80 and over , Neoplasm Staging , Retrospective Studies , Anal Canal/pathology , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality
20.
Clin Oncol (R Coll Radiol) ; 36(6): 353-361, 2024 Jun.
Article En | MEDLINE | ID: mdl-38575432

BACKGROUND: The utility of Adaptive Radiotherapy (ART) in Head and Neck Squamous Cell Carcinoma (HNSCC) remains to be ascertained. While multiple retrospective and single-arm prospective studies have demonstrated its efficacy in decreasing parotid doses and reducing xerostomia, adequate randomized evidence is lacking. METHODS AND ANALYSIS: ReSTART (Reducing Salivary Toxicity with Adaptive Radiotherapy) is an ongoing phase III randomized trial of patients with previously untreated, locally advanced HNSCC of the oropharynx, larynx, and hypopharynx. Patients are randomized in a 1:1 ratio to the standard Intensity Modulated Radiotherapy (IMRT) arm {Planning Target Volume (PTV) margin 5 mm} vs. Adaptive Radiotherapy arm (standard IMRT with a PTV margin 3 mm, two planned adaptive planning at 10th and 20th fractions). The stratification factors include the primary site and nodal stage. The RT dose prescribed is 66Gy in 30 fractions for high-risk PTV and 54Gy in 30 fractions for low-risk PTV over six weeks, along with concurrent chemotherapy. The primary endpoint is to compare salivary toxicity between arms using salivary scintigraphy 12 months' post-radiation. To detect a 25% improvement in the primary endpoint at 12 months in the ART arm with a two-sided 5% alpha value and a power of 80% (and 10% attrition ratio), a sample size of 130 patients is required (65 patients in each arm). The secondary endpoints include acute and late toxicities, locoregional control, disease-free survival, overall survival, quality of life, and xerostomia scores between the two arms. DISCUSSION: The ReSTART trial aims to answer an important question in Radiation Therapy for HNSCC, particularly in a resource-limited setting. The uniqueness of this trial, compared to other ongoing randomized trials, includes the PTV margins and the xerostomia assessment by scintigraphy at 12 months as the primary endpoint.


Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Squamous Cell Carcinoma of Head and Neck , Xerostomia , Humans , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/adverse effects , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Head and Neck Neoplasms/radiotherapy , Xerostomia/etiology , Male , Female , Radiation Injuries/prevention & control , Radiotherapy Dosage , Salivary Glands/radiation effects
...